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Abstract— In this paper, we endow the model reference adap-
tive control (MRAC) with a novel parameter-dependent input
normalization (PIN) to completely eliminate the conventional
assumption of the high-frequency gain. Specifically, neither the
sign nor the prior knowledge of the upper or lower bounds
is required. To this end, we resort to an error augmentation
together with a smart design of an adaptive law with a dead
zone operation. Global stability in the mean square sense
is established with the conventional proof concepts of the
augmented error approach. In this way, no persistent excitation
requirement is required. Although the system in question is
assumed to be unity-relative-degree, the proposed technique
can be easily extended to systems of arbitrary relative degrees.
Finally, compared with the Nussbaum function-based methods
in a numerical experiment, we show that transient behavior in
our method is significantly improved.

I. INTRODUCTION

We consider an uncertain LTI SISO system with a unitary
relative degree described by

y(s) = kpG(s) Ju(t)K , (1)

with control input u ∈ R, measurable output y ∈ R and high-
frequency gain kp ∈ R\ {0}. The sign of kp is referred to as
the control direction. G JuK denotes the output of the operator
G(s) (in the Laplace domain) with input u(t). The operator
G(s) is in the form of G(s) = N(s)/D(s), where N(s) and
D(s) are monic polynomials with degrees of n − 1 and n
respectively. The uncertainties lie in kp, N(s), D(s), which
are all completely unknown. The tracking problem under
the MRAC framework pertains to the design of an output
feedback controller for u(t) such that the system output y(t)
tracks a reference signal yr, which is generated from

yr(s) =
1

s+ p
Jr(t)K (2)

with a piecewise-continuous and bounded reference input
r ∈ R and p > 0.

The classical MRAC framework consists of a certainty
equivalent controller whose parameter is updated online
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via an adaptive law, the latter based on output-error pa-
rameterization or input-error parameterization. Among vari-
ous approaches [1]–[3] developed under MRAC framework,
however, the prior knowledge of the sign of kp is necessary
and usually assumed to be known as prior. This assumption
severely hampers the implementation of MRAC scheme to
applications with unknown control direction, to name a few,
uncalibrated robotics visual servoing [4], braking problem in
ABS systems [5], and aircraft attitude tracking [6].

Consequently, removing the assumption of the sign of kp
in the MRAC framework is of great interest. There are three
mainstream techniques in the literature to deal with the con-
trol direction uncertainty. The first one is using the Nussbaum
approach [6]–[8], that consists of changing the adaptive gain
with a smooth function whose sign is alternating in time, so
as to explore different control directions. This technique is
known to provide a poor transient behavior, which makes its
practical implementation inadmissible [9], [10]. The second
is using a switching signal to detect the control direction in
real-time [11], [12]. Nevertheless, the discontinuous switch-
ing of the controller is prone to induce high-frequency chat-
tering, which severely limits its application [4]. The third is
in fashion of indirect adaptive control, and using the inverse
of such an estimate in the formulation of the control input
(such a technique requires the application of a switching
projection [1] in the adaptation to avoid singularities upon
inverting the estimated kp). However, the erratic behavior
brought by possible non-stop switching and the issue of
unverifiable persistence excitation (PE) assumption on the
regressor signal have not been solved yet. Remarkable is the
recent work [10], in which under a weak interval excitation
(IE) assumption, a dynamic regressor extension and mixing
(DREM) estimator is employed and without any parameter
projection and switching mechanism, asymptotic tracking is
achieved. Unfortunately, even if the IE assumption is satis-
fied, there might occur parameter frozen phenomena [13]–
[15] affecting the closed-loop stability. Therefore, a natural
question arises: Instead of the Nussbaum approach, how to
remove the longstanding high-frequency gain assumption of
MRAC, and not resort to the PE assumption on regressors
or reference input? This question, to the best of the authors’
knowledge, remains open and seems far from settled.

In our previous work [16], we developed an unnormalized
PIN-based MRAC scheme to directly estimate the unknown
high-frequency gain without limitations of aforementioned
schemes. The key point to overcome the possible singularity
is injecting through unmeasurable derivatives of the output
error with a switching gain function. However, to overcome



the issue of avoiding the direct differentiation of the tracking
error, we resorted to additional filtering stages that increased
the complexity of the overall scheme and required invoking
non-conventional proof concepts to prove global asymptotic
stability of the adaptive system. Moreover, inherited from
the flaws of unnormalized MRAC, the extension to systems
with arbitrary relative degrees is not trivial, and the inacces-
sibility of higher derivatives of the output error restricts the
algorithm in [16] to unity-relative-degree systems.

In this paper, we resort to an augmented error approach
where unmeasurable derivatives of the output error do not
represent an issue, being naively filtered by a causal op-
erator. Notably, the classical adaptive law is modified with
a dead zone function, which is core to preventing infre-
quent switching and ensuring the switching stops at finite
times. Then, conventional proof concepts can be applied,
and global stability in the mean square sense is proven.
Also, the augmented error approach dramatically simplified
the derivation of unavailable differentiation of the tracking
error, and the dead zone in the adaptive law enhances the
robustness of the overall adaptive system. Though the system
considered in this paper is unity-relative-degree, the idea
of the augmented error approach can be easily extended to
systems with arbitrary relative degrees. To clarify its main
idea, we only consider systems with a unitary relative degree
here. The distinctive features of the proposed scheme are:

1) Neither the sign nor the prior knowledge of the upper or
lower bounds is required. The conventional assumption
of the high-frequency gain is completely eliminated.

2) Distinct from [16], the whole algorithm is explicitly
simplified and renders the extension to systems with
arbitrary relative degrees possible.

3) Without using any Nussbaum-type oscillating function,
the transient behavior is substantially improved.

4) No persistence excitation or sufficiently rich require-
ment is required for the regressor and reference signals.

II. PROBLEM FORMULATION

The MRAC problem is formally formulated in this section.
In this work, we do not require prior knowledge of the sign
or bound information of kp, which is usually needed in the
conventional MRAC framework [1].

Assumption II.1. The monic polynomial N(s) is Hurwitz.

Assumption II.2. The degree n of monic polynomial D(s)
is known and the relative degree of the plant (1) is ν := 1.

Define the tracking error as ỹ(t) := y(t)−yr(t). Under the
MRAC framework, we express the tracking error in Elliott’s
parameterization form [3] to avoid overparametrization and
ignore the exponentially decaying effect of initial conditions

ỹ(s) = kp
1

s+ p

q
u(t)− ξ⊤(t)θ

y
(3)

where θ ∈ R2n+1 is the unknown constant parameter vector
and ξ ∈ R2n+1 is a vector of regressors generated by
collating the reference signal with filtered input and output

signals in the following form

ξu(s) =
A(s)

Λ(s)
Ju(t)K ∈ Rn, ξy(s) =

A(s)

Λ(s)
Jy(t)K ∈ Rn,

ξ⊤(t) =
[
ξ⊤u (t) ξ⊤y (t) r(t)

]
∈ R2n+1 (4)

in which A(s) :=
[
1 s · · · sn−1

]⊤ ∈ Rn, and Λ(s) is
an arbitrary monic and Hurwitz polynomial of order n.

For future use, we introduce the definition of µ-small in
the mean square sense (m.s.s)1 usually adopted in robust
adaptive control to formulate our tracking problem.

Definition II.1. [1] Let x : [0,∞) 7→ Rn, where x ∈ L2e,
and consider the set

S(µ, t0) =

{
x : [0,∞) 7→ Rn

∣∣∣∫ t+T

t
x⊤(τ)x(τ)dτ

≤ c0µT + c1,∀t ≥ t0, T ≥ 0

}
for a given constant µ ≥ 0, where c0, c1 ≥ 0 are some finite
constants, and c0 is independent of µ. We say that x is µ-
small in the m.s.s for t ≥ t0 if x ∈ S(µ, t0).

In this study, we employ a deadzone operation aimed at
mitigating potential instability stemming from continuous
switching. While this approach enhances robustness, it comes
at the cost of compromising the ideal property of asymptotic
convergence and may introduce nonzero errors at steady
state, as elucidated by the m.s.s. property of Definition II.1.
Nonetheless, by selecting a suitably small dead-zone param-
eter, the magnitude of steady-state errors can be minimized.

Problem II.1. Under Assumptions II.1-II.2 and given un-
known high-frequency gain kp, polynomials N(s), D(s) of
the plant (1), for any reference signal yr(t) ∈ L∞, which is
generated from the reference model (2) with reference input
signal r(t) ∈ L∞, the control objective is then to design an
output feedback control input u(t) such that

i) all the trajectories of the closed-loop system are
bounded;

ii) for a given ϵ > 0, there exists a Tϵ > 0, such that the
tracking error ỹ(t) satisfies ỹ(t) ∈ S(ϵ, Tϵ).

III. THE PIN-BASED MRAC SCHEME

With Assumptions II.1 and II.2, we are ready to introduce
the PIN-based MRAC scheme to solve Problem II.1 without
any prior information of the high-frequency gain kp.

A. Controller design

Rewriting (3) into its state-space form ˙̃y = −pỹ+ kp(u−
ξ⊤θ) and multiplying its both sides by β := k−1

p gives

β ˙̃y = −βpỹ + u− ξ⊤θ. (5)

Again, multiplying both sides by a gain function χ(t) to be
determined later, it follows that

χ ˙̃y = −χpỹ + χkpu− χξ⊤ϑ (6)

1In [1], t ≥ 0 is used rather than t ≥ t0.



with ϑ := kpθ. Adding (5) and (6) together leads to

(β + χ) ˙̃y = −(β + χ)pỹ + u+ χkpu− ξ⊤θ − χξ⊤ϑ,

which implies the ideal control law (capable of regu-
lating the tracking error to zero based on the full in-
formation of the plant parameters) takes the form of
u∗ = (ξ⊤θ + χξ⊤ϑ)/(1 + χkp). This simplified line of rea-
soning allows us to propose the implementable controller:

u =
1

1 + χk̂p

(
ξ⊤θ̂ + χξ⊤ϑ̂

)
(7)

in which k̂p ∈ R and θ̂, ϑ̂ ∈ R2n+1 are the estimates of
kp, θ and ϑ respectively. The estimated parameters and their
convergence properties are given in the sequel.

B. Adaptive law and its convergence property

To derive the estimator of kp, θ, ϑ, we first express (3) in
time domain as ỹ = kp(uf − ξ⊤f θ) with Juf K := 1

s+p JuK
and Jξf K := 1

s+p JξK. Employing the same manipulations as
we did for (5)-(6), we multiply its both sides by β and χ
respectively, and adding them together gives the expression

(β + χ)ỹ = uf + χkpuf − ξ⊤f θ − χξ⊤f ϑ. (8)

Adding to both sides of (8) the term β̃ỹ with β̃ := β̂−β and
β̂ ∈ R as the estimate of β, then the error equation becomes

ỹ=
1

β̂ + χ
uf+

ỹ

β̂ + χ
β̃+

χuf

β̂ + χ
kp−

ξ⊤f

β̂ + χ
θ−

χξ⊤f

β̂ + χ
ϑ. (9)

Based on (9), we introduce an augmented error signal ea as

ea= ỹ− 1

β̂ + χ
uf−

χuf

β̂ + χ
k̂p+

ξ⊤f

β̂ + χ
θ̂+

χξ⊤f

β̂ + χ
ϑ̂, (10)

from which a linear estimation error equation is obtained

ea =
ỹ

β̂ + χ
β̃ − χuf

β̂ + χ
k̃p +

ξ⊤f

β̂ + χ
θ̃ +

χξ⊤f

β̂ + χ
ϑ̃ (11)

with k̃p := k̂p − kp, θ̃ := θ̂ − θ and ϑ̃ := ϑ̂− ϑ.
According to (11), we resort to a normalized gradient-

based estimation law with a dead zone as follows:

˙̂
β = − γ

β̂ + χ

ỹ

m
(
ea
m

+ g),
˙̂
kp =

γχ

β̂ + χ

uf

m
(
ea
m

+ g),

˙̂
θ = − γ

β̂ + χ

ξf
m

(
ea
m

+ g),
˙̂
ϑ = − γχ

β̂ + χ

ξf
m

(
ea
m

+ g),

(12)

in which γ is an arbitrary positive constant, the augmented
error signal ea is defined in (10),

m :=

(
1+

(
ỹ

β̂ + χ

)2

+

(
χuf

β̂ + χ

)2

+
(1 + χ2)ξ⊤f ξf

(β̂ + χ)2

) 1
2

, (13)

and the dead zone function is designed as

g(t) =

 0, if |ea
m

| ≥ g0

− ea
m

, if |ea
m

| < g0
(14)

with a user-defined threshold constant g0 > 0.

To overcome the singularity problem possibly affecting
the denominators in the control law (7) and the adaptive law
(12), the gain function χ(t) is delicately designed as:

χ = k̂p + χh (15)

with a hysteretic switching dynamics χh(t) designed to be

χh(0) =


− 1, β̂(0) + k̂p(0) <

1

2

1, β̂(0) + k̂p(0) ≥
1

2

χh(t) =


− 1, β̂(t) + k̂p(t) ≤ −1

2

1, β̂(t) + k̂p(t) ≥
1

2

xh(t
−), −1

2
< β̂(t) + k̂p(t) <

1

2

, t > 0,

where χh(t
−) := limτ→t− χh(τ) denotes the left-hand limit

of the function χh at time t.

Lemma III.1. The gain function χ(t) in (15) guarantees that
both 1 + χk̂p ̸= 0 and β̂ + χ ̸= 0 for all k̂p and β̂.

Proof. With χ in the form of (15), we obtain 1 + χk̂p =
1+ k̂2p + k̂pχh, β̂ + χ = β̂ + k̂p + χh. For the former, since
|χh| ≤ 1, one derives 1+χk̂p ≥ 3

4 . As for the latter, thanks
to the chosen χh, one has |β̂+χ| ≥ 1

2 . Hence, the singularity
problem is overcome through the switching of χ.

Remark III.1. Compared to the adaptive laws [1], [17], which
overcome the singularity problem by switching the estimate
k̂p across the singular point, here the key idea of our method
is to inject a signal χ ˙̃y through the input u into (5). Then,
thanks to the parameter-dependent gain function χ, we are
able to normalize the input u, which solves the singularity
issue. Besides, with the augmented estimates β̂, k̂p, θ̂, ϑ̂,
we derive a linear error estimation equation in (11), thus
bypassing the division of k̂p and meanwhile relaxing the
prior knowledge of the lower boundary of kp.

Lemma III.2. Consider the linear estimation error equation
(11) and the gain function χ in (15), the adaptive law (12)
with the dead zone (14) guarantees that β̂, k̂p, θ̂, ϑ̂ ∈ L∞ and
ea
m ∈ S(g20 , 0) ∩ L∞ and ˙̂

β,
˙̂
kp,

˙̂
θ,

˙̂
ϑ ∈ L2 ∩ L∞.

Proof. Consider the Lyapunov-like function V = (β̃2+ k̃2p+

θ̃⊤θ̃ + ϑ̃⊤ϑ̃)/(2γ), whose derivative along the trajectory of
(12) can be immediately computed as

V̇ = −
ỹβ̃ − χuf k̃p + ξ⊤f θ̃ + χξ⊤f ϑ̃

m(β̂ + χ)

(ea
m

+ g
)

= −ea
m

(
ea
m

+ g)

=

 0, if |ea
m

| < g0

− (
ea
m

)2, if |ea
m

| ≥ g0
(16)

implying V̇ ≤ 0. Hence, β̂, k̂p, θ̂, ϑ̂ ∈ L∞. Then, from (11)
and (13), we obtain ea

m ∈ L∞ due to the boundedness of



β̂, k̂p, θ̂, ϑ̂ and the normalization by m. It, in turn, implies
˙̂
β,

˙̂
kp,

˙̂
θ,

˙̂
ϑ ∈ L∞ from (12). From (16), it follows

V̇ = −ea
m

(
ea
m

+ g) ≤ −(
ea
m

)2 + |ea
m

|g0 ≤ −1

2
(
ea
m

)2 +
g20
2

which implies that ea
m ∈ S(g20 , 0).

Let’s examine the L2 property of the parameter estimation
derivatives. From (14), it is trivial to obtain g( eam + g) = 0,
thus ( eam +g)2 = ea

m ( eam +g)+g( eam +g) = ea
m ( eam +g). Then,

utilizing the integrable property of V̇ , we derive ea
m +g ∈ L2,

which, from (12), implies ˙̂
β,

˙̂
kp,

˙̂
θ,

˙̂
ϑ ∈ L2.

Due to Lemma III.2, the boundedness of ˙̂
β and ˙̂

kp ensures
the existence of an upper bound of | ˙̂β +

˙̂
kp|, which implies

the existence of a non-zero dwell time τ > 0 such that

tk+1 − tk ≥ τ, ∀k ∈ {0, 1, 2, · · · } (17)

in which the switching instant tk determines the change the
sign of χh. It is explicitly seen that the dead zone destroys
the ideal convergence property of the adaptive law, such
as ea

m ∈ L2, however it plays a critical role in preventing
infrequent switching of (15), that may result in instability
(as claimed in Remark 3.2 in [18]). Potentially, if there is
a measurement noise in the output y, the dead zone will
prevent parameter drifting and improve the robustness of the
proposed algorithm. Moreover, thanks to the introduction of
the dead zone, the switching will stop after some finite time,
which is concluded in the following lemma:
Lemma III.3. Consider the gain function χ in (15), there
exists a finite time Tf > 0 such that the switching stops
with a finite switching number for all t ≥ Tf .

Proof. From (16), we have V̇ = − ea
m ( eam +g) = −| eam || eam +

g|, where the second equation holds due to the choice of g
in (14). Since | eam + g| = 0 if | eam | < g0, it follows that V̇ =
−| eam || eam +g| ≤ −g0| eam +g|, which implies that ea

m +g ∈ L1.

In view of (12), we have | ˙̂β| ≤ γ| eam + g|, | ˙̂kp| ≤ γ| eam + g|,
where we utilize the normalization of m. Thus, ˙̂

β,
˙̂
kp ∈ L1,

which in turn implies the existence of

lim
t→∞

∫ t

0

˙̂
βdτ = lim

t→∞
β̂(t)− β̂(0)

lim
t→∞

∫ t

0

˙̂
kpdτ = lim

t→∞
k̂p(t)− k̂p(0),

and β̂(t), k̂p(t) converge to some limits, denoted as β̂0, k̂p0
respectively (see [1, Chapter 8.4.3] for more technical de-
tails). Hence, β̂(t)+k̂p(t) converge to its limit β̂0+k̂p0. Then,
with the choice of χh designed in (15), the switching must
stop after some finite time Tf , and moreover, the switching
number is finite due to the finite dwell time and Tf .

Remark III.2. The control direction uncertainty, in the exist-
ing literature [1], [8], [17], could be overcome by utilizing
Nussbaum-type functions or adopting a switching projection.
Unfortunately, the former has an inferior transient behavior
which is practically inadmissible while the latter possesses an

erratic behavior brought by possible non-stop switching. It is
worth noting that the DREM-based scheme [17] guarantees
at most one switching, however, among these switching
projection-based methods, the issue of unverifiability PE
assumption on the regressor signal has not been solved yet.
In our method, we guarantee there exists a finite switching
and relax the PE condition for the first time.

IV. STABILITY ANALYSIS

Now, we proceed with the stability analysis of the closed-
loop system under the control protocol (7).
Theorem IV.1. With Assumptions II.1-II.2, the controller (7)
composed of the adaptive law (12) and the gain function
(15), there exists a positive constant g∗0 such that for all g0 <
g∗0 , the closed-loop trajectories are bounded and the tracking
error ỹ satisfies ỹ ∈ S(g20 , Tf ) for some finite time Tf .

Proof. The main idea of the proof relies on the following
observation: the linear estimation error equation (11) is ob-
tained by the usual augmented error approach from (9)-(11),
thus one can intuitively use standard results from literature
[1], [2] that relate the augmentation term with the derivative
of parameters. The non-standard thing, observe (10), is that
some of parameters k̂p, ϑ̂ are multiplied by χ, then we must
consider the weak derivative of these terms since χ is not
time-differentiable at some points. At this point, the finite
switching in Lemma III.3 plays a key role, that is, the finite
number of switching implies that χ̇ ∈ L2. Then, the proof
of the usual augmented error approach still holds.

For future use, reverting back to (10), we define
θ̂a :=

[
−1 −χk̂p θ̂⊤ χϑ̂

]⊤ ∈ R4n+4, ωf :=[
uf uf ξ⊤f ξ⊤f

]⊤ ∈ R4n+4, ω :=
[
u u ξ⊤ ξ⊤

]⊤ ∈
R4n+4, then (10) becomes

ea = ỹ +
1

β̂ + χ
θ̂⊤a ωf . (18)

Note that, by the definition of u in (7), it follows

θ̂⊤a ω = −(1 + χk̂p)u+ (ξ⊤θ̂ + χξ⊤ϑ̂) = 0, (19)

which is the key point of the following proof.
The proof contains three major steps:
First, to relate θ̂⊤a ω with θ̂⊤a ωf , we invoke the swapping

lemma [1], which with use of (19) establishes that

1

s+ p

r
θ̂⊤a ω

z
=

r
θ̂⊤a ωf

z
− 1

s+ p

s
˙̂
θ⊤a

1

s+ p
JωK

{
= 0

which implies the following equation with (18):

JỹK = JeaK −
1

β̂ + χ

1

s+ p

s
˙̂
θ⊤a

1

s+ p
JωK

{
, (20)

in which ea can be expressed as ea = ea
mm with ea

m ∈
S(g20 , 0) from Lemma III.2.

Second, we introduce a fictitious signal2 mf as m2
f :=

1 + ∥ỹ∥22δ , and in view of (20), m2
f satisfies

m2
f ≤ 1 + ∥ea

m
m∥22δ + c∥ ˙̂θ⊤a ωf∥22δ (21)

2L2δ norm is defined as ∥x[0,t]∥2δ :=
(∫ t

0 e−δ(t−τ)x⊤(τ)x(τ)dτ
) 1

2 .



where c ≥ 0 is used to denote any finite constant. With
(21), we will establish the relation between m,ωf with ỹ.
Observing (13), the constitutions of m are uf , ξf , ỹ which
can be expressed as

Juf K =
1

s+ p

t
θ̂⊤ + χϑ̂⊤

1 + χk̂p
ξ

|

, Jξf K =
1

s+ p
JξK ,

JỹK =
kp

s+ p

t(
θ̂ + χϑ̂

1 + χk̂p
− θ

)⊤

ξ

|

,

JξK =
[
A(s)⊤G(s)−1

kpΛ(s) Jỹ + yrK
A(s)⊤

Λ(s) Jỹ + yrK JrK
]⊤

.

Since the operators G(s)−1

s+p , A(s)⊤G(s)−1

Λ(s) and A(s)⊤

Λ(s) are
proper and stable and 1

s+p is strictly proper and stable, we
utilize [1, Lemma 3.3.2] to derive m

mf
∈ L∞. Similarly,

mf guarantees that ωf

mf
∈ L∞. Therefore, (21) becomes

m2
f ≤ 1 + c∥Θ̃mf∥2δ and can be rewritten into

m2
f ≤ 1 + c

∫ t

0

e−δ(t−τ)Θ̃2(τ)m2
f (τ) dτ (22)

where Θ̃2 := ( eam )2 + ∥ ˙̂θa∥2.
The last thing is to utilize the small-gain lemma to

show the boundedness of closed-loop trajectories and the
convergence property of ỹ. Hence, from (22), the key point
is to show ˙̂

θa ∈ L2, that is χ̇ ∈ L2. Employing triangle
inequality, the L2 norm of χ̇ is

∥χ̇∥2L2
≤ ∥ ˙̂kp∥2L2

+ ∥χ̇h∥2L2

≤ ∥ ˙̂kp∥2L2
+

∫ ∞

0

(δh(tk)δ(t− tk))
2
dt ≤ ∥ ˙̂kp∥2L2

+ 4k

where tk is the switching instant, and k is denoted as the
maximum switching number, which is finite and proven
in Lemma III.3, while δ(·) is the Dirac’s delta operator,
δh(t) := sign(χh(t)−limτ→t− χh(τ)) is a left-discontinuous
function that encodes the up-fronts or down-fronts of χh.
Thanks to ˙̂

kp ∈ L2 from Lemma III.2 and the finite switching
from Lemma III.3, one obtains ∥χ̇∥L2 < ∞, that is ˙̂

θa ∈ L2.
Applying the Bellman-Gronwall lemma III [1, Lemma 3.3.9]
to (22), one obtains m2

f (t) ≤ Φ(t, 0) + δ
∫ t

0
Φ(t, τ) dτ , in

which Φ(t, τ) = e−δ(t−τ)ec
∫ t
τ
Θ̃2(s) ds. Since ˙̂

θa ∈ L2 and
ea
m ∈ S(g20 , 0) by Lemma III.2, Φ(t, τ) can be written into

Φ(t, τ) ≤ c e−(δ−cg2
0)(t−τ). (23)

Hence, from (23), if g0 is chosen such that g20 < δ
c < g∗0

2 :=
2p
c , then Φ(t, τ) is bounded from above by a decaying to zero

exponential, which in turn, implies mf ∈ L∞. Hence, we
have ỹ,m, ωf ∈ L∞ and all signals are bounded. After t ≥
Tf , from Lemma III.3, the switching stops, that is χ̇h(t) = 0.
Then, resorting to (20) and with m,ωf ∈ L∞, we obtain∫ t+T

t

ỹ2 dτ ≤ c

∫ t+T

t

(
ea
m

)2 dτ + c

∫ t+T

t

∥ ˙̂θa∥2 dτ (24)

for all t ≥ Tf and T ≥ 0. Again, with ea
m ∈ S(g20 , 0)

from Lemma III.2, we derive from (24) the inequality∫ t+T

t
ỹ2 dτ ≤ cg20T + c. Hence, ỹ ∈ S(g20 , Tf ).

V. SIMULATION

This section illustrates the effectiveness of the proposed
PIN-based MRAC scheme compared with two algorithms,
the first using a classical Nussbaum-gain [1, Chp 6.5.3], and
the second employing a DREM with a switching projec-
tion [17]. Note that, since we utilize an augmented error
approach, it is trivial to extend our algorithm to systems
with a higher relative degree. Here we only exhibit the
performance of the proposed method without resorting to
mathematical developments that would unnecessarily over-
complicate the exposition and blur up the paper contribution.
All the simulations are conducted under ode45 with the
identical simulation precision of 1× 10−3.

We consider a system with a unitary relative degree in the
form of

y =


− s+ 1

s2 + 2.1s+ 0.2
[[u]] , t < 400

s+ 1

s2 + 2.1s+ 0.2
[[u]] , t ≥ 400

in which a sudden change of the sign of the high-frequency
gain happens at 400 seconds, definitely posing a tough
challenge. The measurement output y(t) is to track the
reference signal yr(t) generated by yr = 1

(s+1) [[r]] with the
reference input r(t) = sin(3t), that is not sufficiently rich.

The filter Λ(s) is chosen as Λ(s) = (s+1)2. A sufficiently
small threshold of the dead zone is selected as g0 = 0.001.
For the sake of a fair comparison, the adaptive gain in all
three methods is chosen the same, i.e., γ = 15. In the DREM-
based method, we select the tuning gain kp = 0.1 and
operators Hi(s) =

i
s+i , i = 1, · · · , 5 while in the Nussbaum-

based method, the Nussbaum-type function is chosen as
N(x) = x2 cos(x). The initial conditions of the reference
model and filters are set to zero and the plant is initialized
to be y(0) = 2. All the estimators are initialized to be zero
except the k̂p(0) set is chosen to be k̂p(0) = 1 in the DREM-
based method, which is non-zero.
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Fig. 1. Comparison of the time history of tracking error ỹ(t).

Fig. 1 demonstrates that all methods achieve fast-tracking
of the output, but their transient performances behave differ-
ently, especially during the sudden change of high-frequency
gain. Only one switching, as depicted in Fig. 2, happens
such that the input by the proposed method can quickly
respond to the sudden change and the smallest overshoot



0 200 400 600 800

Time (sec)

-2

0

2
In

p
u

t

0 200 400 600 800

Time (sec)

-1

0

1

S
w

it
ch

in
g

 s
ig

n
al

0 0.5 1
-1
0
1

Fig. 2. Time history of the control input u(t) and switching signal χh(t)
by the PIN-based MRAC scheme.

occurs in the tracking error, which explicitly outperforms
other methods. Due to the dead zone, the tracking error by
the proposed method can only converge to a small residual
set in the steady state, as shown in Fig. 1. However, the
finite switching enables the proposed controller to overcome
the control direction uncertainty at a very fast speed.

Next, we show the robustness of the proposed method with
the measurable output as ya = y + d, where d is a biased
sinusoidal signal as d(t) = 0.1 + 0.001 sin(100t). Though
the amplitude of d is quite small, the unmodeled noise still
incurs the performance deterioration of the Nussbaum-based
method, while thanks to the dead zone, the tracking error by
the proposed method pertains to satisfactory performance.
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Fig. 3. Comparison of the time history of tracking error ỹ(t) under
measurement noises.

VI. CONCLUSIONS

This paper has developed a different formulation of the
PIN technique to deal with the unknown control direction
under the MRAC framework. Distinguishing from [16], we
create a new augmented error, and filter the unmeasurable
output error. As a consequence, the whole algorithm is
explicitly simplified. On the other hand, by invoking an
augmented error approach, we prove the closed-loop stability
with the small-gain lemma. Thus, no persistent excitation
requirement is needed. Distinguishing from existing works
of MRAC under unknown control direction, we completely
remove the bottleneck assumption on the prior knowledge
of the high-frequency gain, including the sign and the lower
or upper bounds. The transient behavior is significantly

improved by avoiding any Nussbaum gain-like oscillation
function, which is shown in the numerical experiment. Also,
the simulation results show enhanced robustness of the
algorithm, which is more suitable for practical applications.
Though the system considered is unity-relative-degree, by
following the proposed design procedures, the extension to
systems with arbitrary relative degrees and the multivariable
version is trivial, which will be our future work.

REFERENCES

[1] P. A. Ioannou and J. Sun, Robust adaptive control. PTR Prentice-Hall
Upper Saddle River, NJ, 1996.

[2] G. Tao, Adaptive control design and analysis. John Wiley & Sons,
2003.

[3] K. S. Narendra and A. M. Annaswamy, Stable adaptive systems.
Courier Corporation, 2012.

[4] T. R. Oliveira, A. J. Peixoto, A. C. Leite, and L. Hsu, “Sliding
mode control of uncertain multivariable nonlinear systems applied
to uncalibrated robotics visual servoing,” in 2009 American Control
Conference, 2009, pp. 71–76.

[5] S. B. Phadke, P. Shendge, and V. S. Wanaskar, “Control of antilock
braking systems using disturbance observer with a novel nonlinear
sliding surface,” IEEE Transactions on Industrial Electronics, vol. 67,
no. 8, pp. 6815–6823, 2019.

[6] J. Chang, R. De Breuker, and X. Wang, “Adaptive Nonlinear Incremen-
tal Flight Control for Systems With Unknown Control Effectiveness,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 59,
no. 1, pp. 228–240, 2023.

[7] R. D. Nussbaum, “Some remarks on a conjecture in parameter adaptive
control,” Systems & control letters, vol. 3, no. 5, pp. 243–246, 1983.

[8] J. Huang, W. Wang, C. Wen, and J. Zhou, “Adaptive control of a
class of strict-feedback time-varying nonlinear systems with unknown
control coefficients,” Automatica, vol. 93, pp. 98–105, 2018.

[9] M. Heymann, J. H. Lewis, and G. Meyer, “Remarks on the adaptive
control of linear plants with unknown high-frequency gain,” Systems
& control letters, vol. 5, no. 6, pp. 357–362, 1985.

[10] R. Ortega, D. N. Gerasimov, N. E. Barabanov, and V. O. Niki-
forov, “Adaptive control of linear multivariable systems using dy-
namic regressor extension and mixing estimators: Removing the high-
frequency gain assumptions,” Automatica, vol. 110, p. 108589, 2019.

[11] T. R. Oliveira, A. J. Peixoto, E. V. L. Nunes, and L. Hsu, “Control
of uncertain nonlinear systems with arbitrary relative degree and
unknown control direction using sliding modes,” International Journal
of Adaptive Control and Signal Processing, vol. 21, no. 8-9, pp. 692–
707, 2007.

[12] Y. Gong, F. Zhu, and Y. Wang, “Robust output regulation for uncertain
nonlinear minimum phase systems under unknown control direction,”
Systems & Control Letters, vol. 185, p. 105747, 2024.

[13] M. De Mathelin and M. Bodson, “Multivariable model reference adap-
tive control without constraints on the high-frequency gain matrix,”
Automatica, vol. 31, no. 4, pp. 597–604, 1995.

[14] N. Barabanov, R. Ortega, and A. Astolfi, “Is normalization necessary
for stable model reference adaptive control?” IEEE Transactions on
Automatic Control, vol. 50, no. 9, pp. 1384–1390, 2005.

[15] N. Barabanov and R. Ortega, “On the need of projections in input-error
model reference adaptive control,” International Journal of Adaptive
Control and Signal Processing, vol. 32, no. 3, pp. 403–411, 2018.

[16] G. Pin, A. Serrani, and Y. Wang, “Parameter-dependent Input Normal-
ization: Direct-Adaptive control with Uncertain Control Direction,” in
2022 IEEE 61st Conference on Decision and Control (CDC), 2022,
pp. 2674–2680.

[17] D. N. Gerasimov, Romeo. Ortega, and V. O. Nikiforov, “Relaxing
the high-frequency gain sign assumption in direct model reference
adaptive control,” European Journal of Control, vol. 43, pp. 12–19,
2018.

[18] G. Tao and G. Song, “Higher Order Tracking Properties of Model Ref-
erence Adaptive Control Systems,” IEEE Transactions on Automatic
Control, vol. 63, no. 11, pp. 3912–3918, 2018.


